

Technical Guidelines

Innovative and ease to use

Neodent® Packaging

Neodent® implant packaging has been updated to a concept that provides convenience and safety through all steps of the procedure, from storage to the placement of the implant.

The new packaging aids in identification of both the implant model as well as its diameter and length, regardless of its storage position.

Package instruction of use

After breaking the sterility seal on the blister, hold the primary package (vial) and twist the lid to open it.

To remove the implant from the vial lift the cap up, which has the stand and implant attached to it.

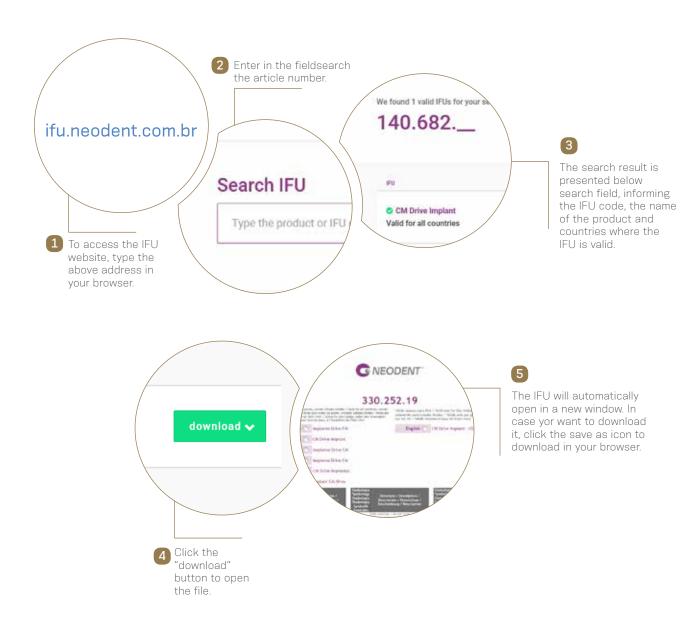

To secure the implant, grip both sides of the implant carrier.

While gripping the implant carrirer, remove the lid.

To capture the implant with the contraangle handpiece attachment, grip the implant carrier while placing the attachment into the implant chamber.

The implant can now be transported to the surgical site.

e-IFU - Electronic Instructions For Use

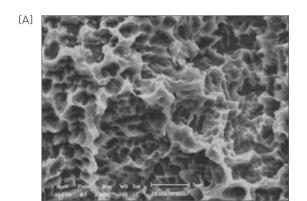

Neodent® innovates once more, providing an on-line platform designed to provide quick and practical use of its own products instructions: the e-IFU (Instructions For Use) website.

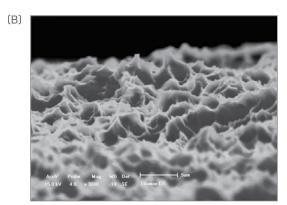
To facilitate access, have the article number, which can be found on the external packaging of the product, in this catalogue or with your local distributor. Once the article number is entered in the website, the professional will have access to relevant information to this product, such as description, indication for use, contraindications, handling, traceability and other features.

i

007

Access: ifu.neodent.com.br


NeoPoros


Constant evolution and safety guarantee.

Based on the abrasive sandblasting concept followed by acid etching, the **NeoPoros** surface promotes, by using controlled grain oxides, cavities on the implant surface that then are uniformed with the acid etching technique.

The whole process of obtaining this surface is guaranteed due to automated time, speed, pressure and particle size control.

Several scientific studies continue to be performed so that the **NeoPoros** surface may be always evolving and promoting much more reliability for you.

Controlled roughness on all implant surface. Scanning electron microscopy (A) shows macro (15-30µm) and (B) microtopography (0,3 - 1,3µm).

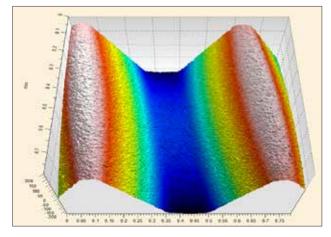


Image taken by confocal microscopy. Roughness and Microtopography. (Sa= 1,4 – 1,8 μm; Sz= 15 μm).

Acqua Hydrophilic Surface designed for high treatment predictability

The Neodent® Acqua hydrophilic surface is the next level of the highly successful S.L.A. type of surface developed to achieve successful outcomes even in challenging situations, such as soft bone or immediate protocols⁽¹⁻⁴⁾

Surface comparison*

*Lab generated images.

NeoPoros surface

Acqua Hydrophilic Surface

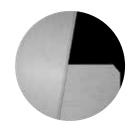
Hydrophilicity

The hydrophilic surface presents a smaller contact angle when in contact with hydrophilic liquids. This provides greater accessibility of organic fluids to Acqua implant surface. (2)

Grand Morse®

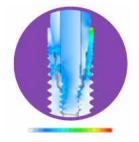
Grand Morse® Connection

The Neodent® Grand Morse® connection offers a unique combination based on proven concepts: a platform switch associated with a deep 16° Morse taper including an internal indexation for a strong and stable connection designed to achieve long-lasting results.



Internal Indexation Precise abutment positioning, protection against rotation

Platform Switching


Abutment design with a narrower diameter than the implant coronal area, enabling the platform switching concept.[5-9]

Deep Connection Allowing a large contact area between the abutment and the implant for an optimal load distribution.

16° Morse Taper connection Designed to ensure tight fit for an optimal connection sealing.

011

Grand Morse® Implants

The Neodent® Grand Morse® implants provide a complete range of treatment options to create the optimal tooth replacement outcomes for all indications, from single tooth to fully edentulous:

- Helix® Grand Morse® is an innovative hybrid implant design maximizing treatment options and efficiency in all bone types.
- Drive® Grand Morse® is a tapered implant developed to achieve high primary stability in challenging bone situations such as soft bones and extraction sockets.
- Titamax® Grand Morse® is a cylindrical implant indicated for bone types I and II and allowing vertical placement flexibility.

		Helix GM®	Drive GM®	Titamax GM®
type				
Bone type	III			
	IV			

Indication table according to Lekholm and Zarb bone classification (1985).

Grand Morse® Abutments

013

Helix GM®

PRODUCT FEATURES:

Implants Description:

- Full dual tapered implant,
- Hybrid contour with a cylindrical coronal part and conica on the apical area:
- Active apex including a soft rounded small tip and helicoidal flutes:
- Dynamic progressive thread design: from compressing trapezoidal threads on the coronal area to self-tapping V-shape threads on the apical part;
- Double threaded implant;
- Grand Morse® connection

Indications

 Indicated for all types of bone density and implant immediate placement post extraction.

Drilling features:

- Contour drill is required in bone types I and II;
- Final pilot drills are highly recommended in bone types and II:
- Implant should be positioned 1 or 2 mm below hone level.
- Drilling speed: 800-1200 rpm for bone type I and II;
- Drilling speed: 500-800 rpm for bone type III and IV;
- Implant insertion speed: 30 rpm:
- Maximum torque for implant placement: 60 N cm

	1		A	M	B	1	N. T.	·	Q.	NA NA	B	ON THE	NA SE	B	CHARLE	THE REAL PROPERTY.	B	Q.
	Initial	Ø 2.0	Ø 3.5	Ø 3.5+	Ø 2.8/3.5	Ø 3.75		Ø 3.0/3.75		Ø 4.0+	Ø 3.3/4.0	Ø 4.3	Ø 4.3+	Ø 3.6/4.3	Ø 5.0	Ø 5.0+	Ø 4.3/5.0	
	103.170	103.425	103.399	103.419	103.414	103.402	103.420	103.415	103.405	103.421	103.416	103.408	103.422	103.417	103.411	103.423	103.418	103.427
Ø 3.5	Optional	Ø		Ø	Ø													
Ø 3.75	Optional	Ø	Ø				Ø	Ø										
Ø 4.0	Optional	Ø	Ø			Ø				Ø	Ø							
Ø 4.3	Optional	Ø	Ø			Ø			Ø				Ø	⊘				
Ø 5.0	Optional	Ø	Ø			Ø			Optional			Ø				⊘	⊘	
																Bone	types and	

												Done	types i anu i	
Ø 3.5	Optional	Ø	Ø											
Ø 3.75	Optional	Ø	Ø		Optional									
Ø 4.0	Optional	Ø	Ø				Optional							
Ø 4.3	Optional	Ø	Ø		Ø				Optional					
Ø 5.0	Optional	Ø	Ø						Ø		Optional			
Ø 6.0	Optional	Ø	Ø		Ø				Ø		Ø			Ø

Helix **GM® Implants**

Bone types III and IV

015

11 ®	mplants						
		8.0 mm	10.0 mm	11.5 mm	13.0 mm	16.0 mm	18.0 mm
)							
*	Acqua	140.943	140.944	140.945	140.946	140.947	140.988
	NeoPoros	109.943	109.944	109.945	109.946	109.947	109.988
		Contract					
	Acqua	140.976	140.977	140.978	140.979	140.980	140.981
	NeoPoros	109.976	109.977	109.978	109.979	109.980	109.981
D.4.0							Continue of the Continue of th
	Acqua	140.982	140.983	140.984	140.985	140.986	140.987
	NeoPoros	109.982	109.983	109.984	109.985	109.986	109.987
V 4.3		V					Continue de la contraction de
	Acqua	140.948	140.949	140.950	140.951	140.952	140.989
	NeoPoros	109.948	109.949	109.950	109.951	109.952	109.989
0.5		V					
۰	Acqua	140.953	140.954	140.955	140.956	140.957	140.990
	NeoPoros	109.953	109.954	109.955	109.956	109.957	109.990
		U					
O.O					_		
0.0	Acqua	140.1009	140.1010	140.1011	140.1012		

GM Healing Abutment

0,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						
Profile	0.8 mm	1.5 mm	2.5 mm	3.5 mm	4.5 mm	5.5 mm
Ø 3.3	106.207	106.208	106.209	106.210	106.211	106.212
Ø 4.5	106.213	106.214	106.215	106.216	106.217	106.218

:: Use the manual Neo Screwdriver (104.060); :: Do not exceed the insertion torque of 10 N.cm.

GM Customizable Healing Abutments

Profile	1.5 mm	2.5 mm	3.5 mm	4.5 mm	5.5 mm	6.5 mm
Ø 5.5	106.223	106.224	106.225	106.226	106.227	
Ø 7.0		106.228	106.229	106.230	106.231	106.232

GM Cover Screw

0 mm	2 mm
117.021	117.02

:: Use the manual Neo Screwdriver (104.060); :: Do not exceed the insertion torque of 10 N.cm.

Drive GM®

PRODUCT FEATURES:

Implants Description:

Indications:

Drilling features:

Drill Sequence

Drive GM® Implants

		8.0 mm	10.0 mm	11.5 mm	13.0 mm	16.0 mm	18.0 mm
Ø 3.5		CARRELL	Constitution				
	Acqua	140.958	140.959	140.960	140.961	140.962	140.963
	NeoPoros	109.958	109.959	109.960	109.961	109.962	109.963
Ø 4.3		OCCUPATION OF THE PERSON OF TH	COLUMN				
	Acqua	140.964	140.965	140.966	140.967	140.968	140.969
	NeoPoros	109.964	109.965	109.966	109.967	109.968	109.969
5.0		CCCCC	1000				
Ø	Acqua	140.970	140.971	140.972	140.973	140.974	140.975
	NeoPoros	109.970	109.971	109.972	109.973	109.974	109.975

GM Healing Abutment

Profile 0.8 mm 1.5 mm 2.5 mm 3.5 mm 4.5 mm 5.5 mm

:: Use the manual Neo Screwdriver (104.060); :: Do not exceed the insertion torque of 10 N.cm.

GM Customizable Healing Abutments

 \emptyset 5.5 (106.223) (106.224) (106.225) (106.226) (106.227) Ø 7.0 106.228 106.229 106.230 106.231 106.232

GM Cover Screw

0 mm 2 mm 117.021 117.022

: Use the manual Neo Screwdriver (104.060); : Do not exceed the insertion torque of 10 N.cm.

017

Titamax GM®

PRODUCT FEATURES:

Implants Description:

Drilling features:

019

Titamax GM® Implants

		7.0 mm	8.0 mm	9.0 mm	11.0 mm	13.0 mm	15.0 mm	17.0 mm
3.5								
0	Acqua NeoPoros	140.906 109.906	140.907 109.907	140.908	140.909	140.910	140.911	140.912 109.912
Ø 3.75								
	Acqua	140.899	140.900	140.901	140.902	140.903	140.904	140.905
	NeoPoros	109.899	109.900	109.901	109.902	109.903	109.904	109.905
Ø 4.0		V	V					
	Acqua	140.913	140.914	140.915	140.916	140.917	140.918	140.919
	NeoPoros	109.913	109.914	109.915	109.916	109.917	109.918	109.919
5.0		ij		U		Į		
0	Acqua NeoPoros	140.920 109.920	140.921 109.921	140.922	140.923 109.923	140.924		

GM Healing Abutment

Profile 0.8 mm 1.5 mm 2.5 mm 3.5 mm 4.5 mm 5.5 mm 106.209 106.210 106.211 106.212 Ø 3.3 (106.207) (106.208) Ø 4.5 106.213 106.214 106.215 106.216 106.217 106.218

:: Use the manual Neo Screwdriver (104.060); :: Do not exceed the insertion torque of 10 N.cm

GM Customizable Healing Abutments

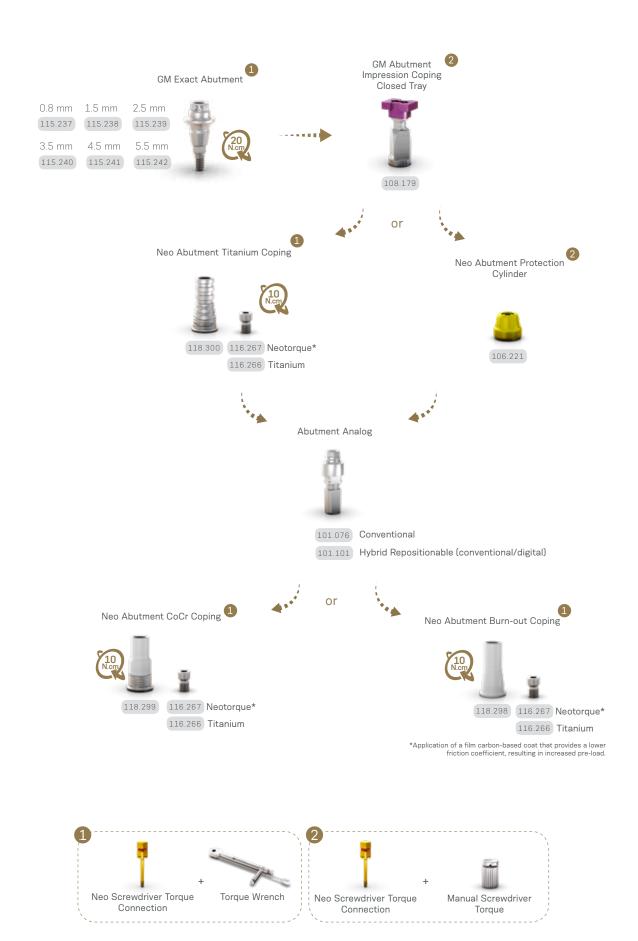
Profile 1.5 mm 2.5 mm 3.5 mm 4.5 mm 5.5 mm 6.5 mm Ø 5.5 (106.223) (106.224) (106.225) (106.226) 106.227 Ø 7.0 106.228 106.229 106.230 106.231 106.232

GM Cover Screw

2 mm 0 mm 117.021 117.022

: Use the manual Neo Screwdriver (104.060); : Do not exceed the insertion torque of 10 N.cm.

GM Abutment


Single-unit screw-retained prosthesis

Recommended in posterior area.

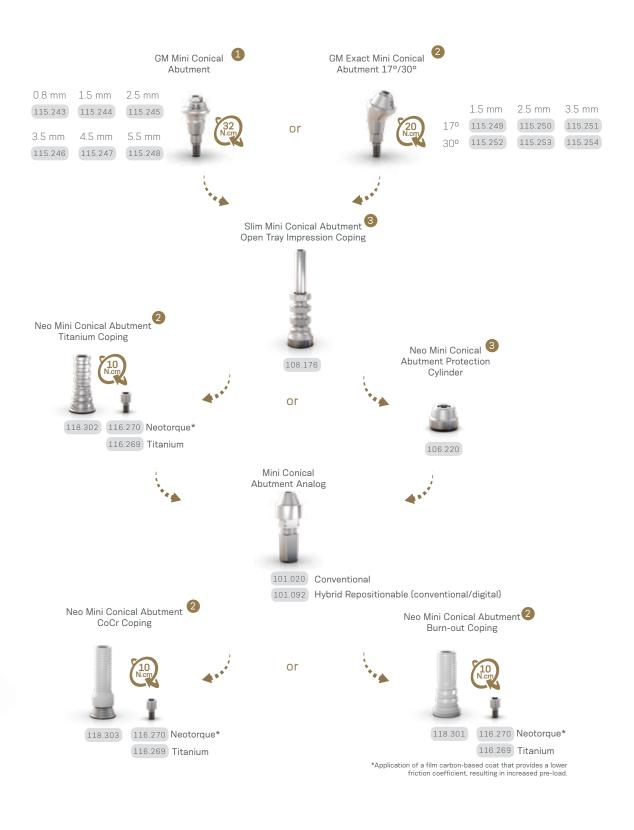
Consider in addition 1.5 - 2.0 mm for the restorative material Minimum interocclusal space of 4.9 mm from the mucosa level

Installation Sequence

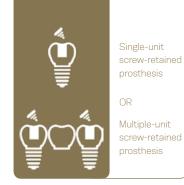
GM Mini Conical Abutment

Consider in addition 1.5 - 2.0 mm for the restorative material

Minimum interocclusal space of 4.5 mm from the mucosa level for straight abutments.



Mini Conical Abutment Polishing Protector

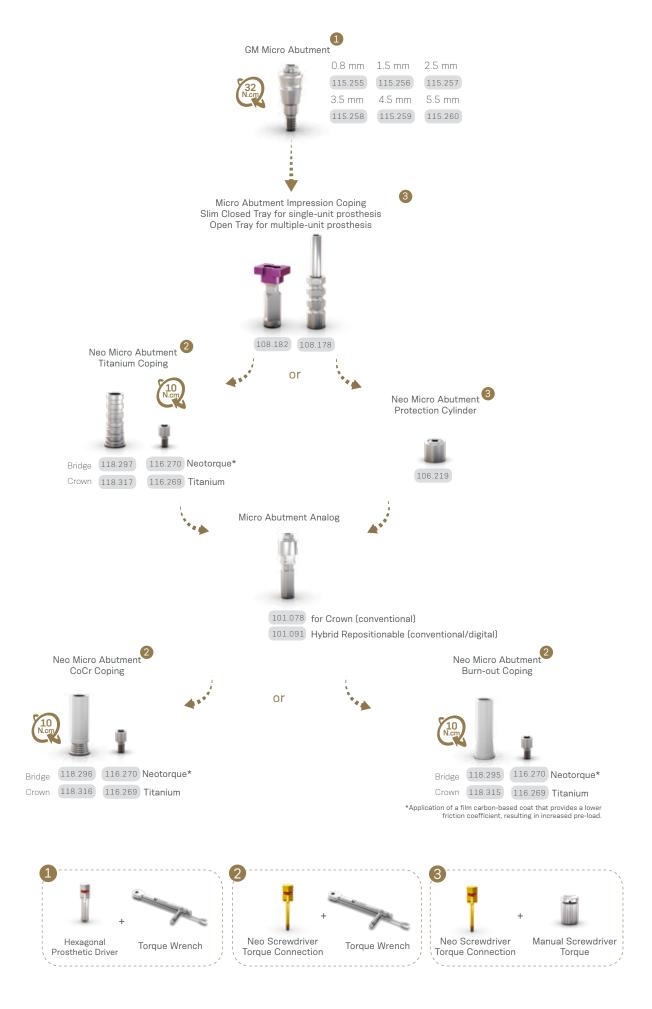

123.008

Installation Sequence

Recommended for limited spaces and narrow inter-dental spaces.

Consider in addition 1.5 - 2.0 mm for the restorative material

Minimum interocclusal space of 3.5 mm from the mucosa level


Accessories

Micro Abutment Polishing Protector

024

Installation Sequence

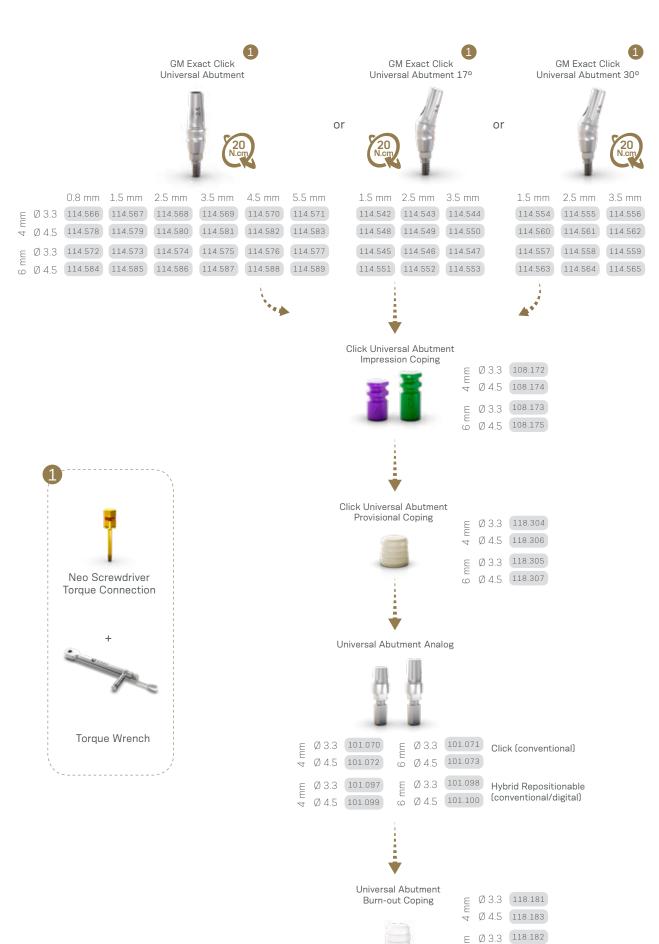
GM Anatomic Abutment

Recommended for anterior region.

Consider in addition 1.5 - 2.0 mm for the restorative material Minimum interocclusal space of 4.9 mm from the mucosa level

Neo Screwdriver Torque

Torque Wrench


Manual Screwdriver

Torque

Neo Screwdriver Torque Connection 027

Consider in addition 1.5 - 2.0 mm for the restorative material Minimum interocclusal space of 4.9 mm from the mucosa level

Installation Sequence

Ø 4.5 118.184

029

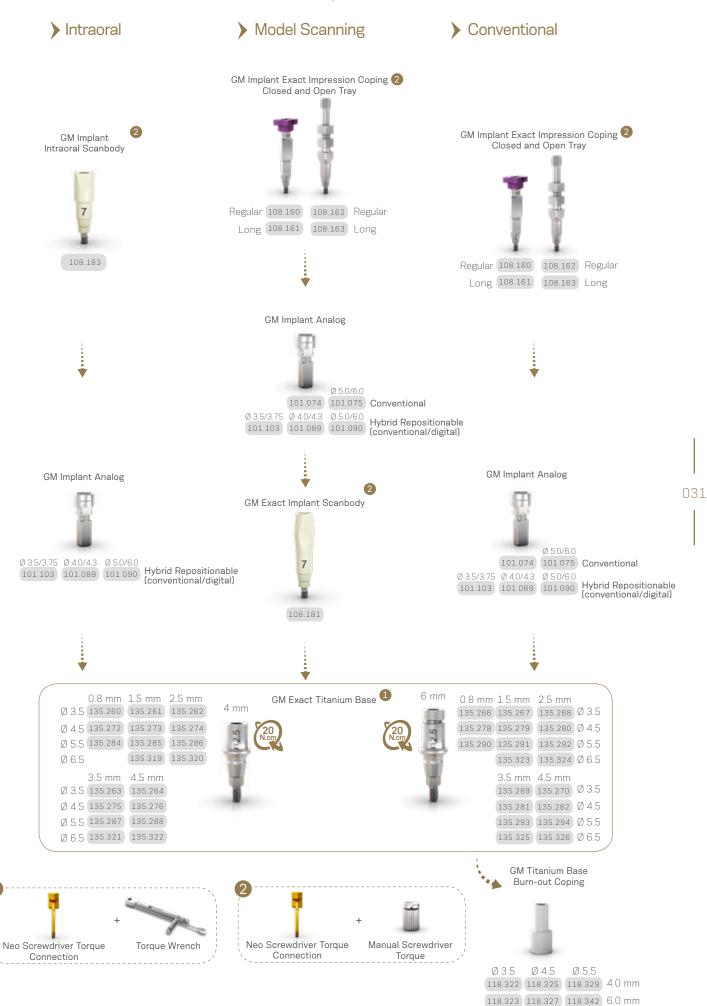
GM Titanium Base


With removable screw.

Single-unit screw-retained prosthesis

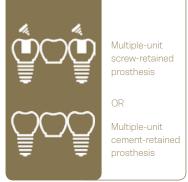
OR

Single-unit cement-retained prosthesis



Consider in addition 1.5 - 2.0 mm for the restorative material

Minimum interocclusal space of 4.9 mm from the mucosa level



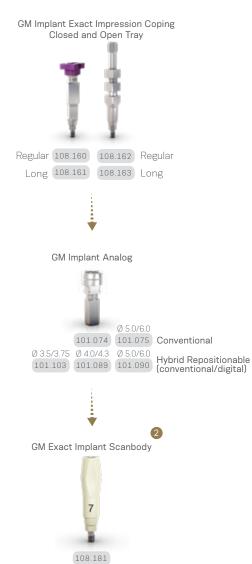
Workflow Options

With removable screw.

032

Accessories

Replacement Sterile Screws



Model Scanning

GM Titanium Base Angled Solution (AS)

With removable screw.

034

Single-unit screw-retained prosthesis

OR

Single-unit cement-retained prosthesis

Accessories

Replacement Sterile Screws

Screw for GM Titanium Base AS

Screwdriver for Contra-

angle

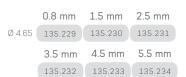
Ø 5.5 (135.339) (135.340) (135.341)

Screwdriver for Torque Wrench

135.342 135.343 135.344 Ø 5.5

With removable screw.

036


Single-unit screw-retained prosthesis

OR

Single-unit cement-retained prosthesis

Installation Sequence

Workflow

Step 1

Step 2

Intra-oral

scanning.

Step 3
Design and

Gingiva height selection and ordering.

Select the Titanium Base C for GM Exact gingival height.

Order the Titanium Base C for $\operatorname{\mathsf{GM}}\nolimits$ Exact.

Please note that the scanbody has to be purchased directy from equipment manufacturer.

Insert the Titanium Base C for GM Exact in the Neodent® implant.

Insert scanbody on the Titanium Base C for GM Exact.

Select in the CAD software the comparable third-party Ti-base and perform the digital design.

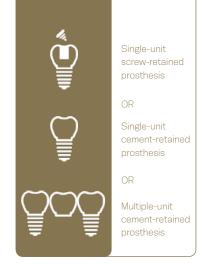
Mill the digital design.

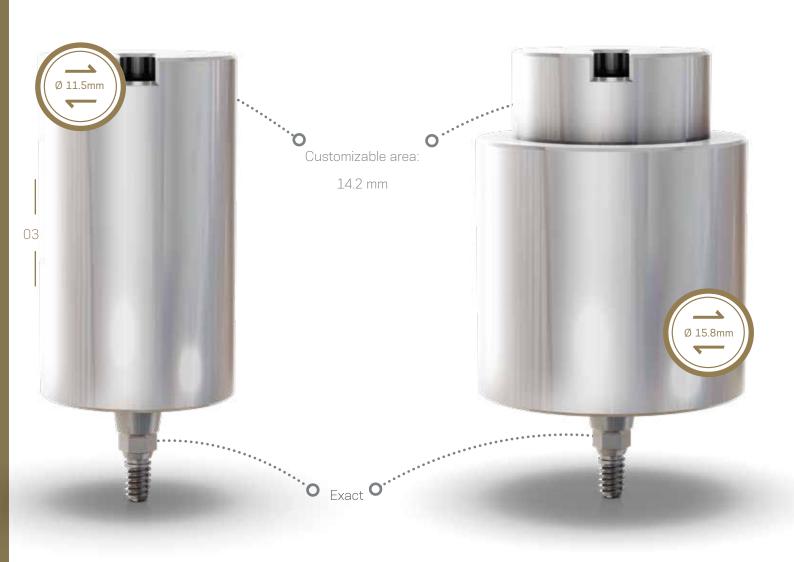
and perfo

CEREC digital library compatibility

Library		Sirona's	Products	Compatible wit	h implant System	
Ti-base	Scanbody	REF Scanbody Omnicam	REF Scanbody Bluecam / Ineos	Griding block	Implant manufacturer	Implant system
NBB 3.4 L						
NB A 4.5 L		6431311	6431295	inCoris ZI meso L	Neodent®	GM, CM, HE, IIPluss
SSO 3.5 L	1					
S BL 3.3 L	_					
S BL 4.1 L						
BO 3.4 L						

Step 4

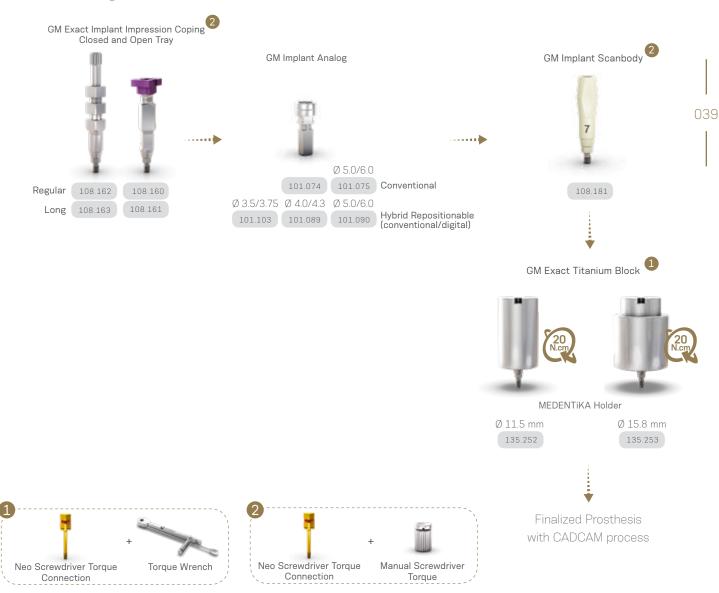

Finalization and fixation.

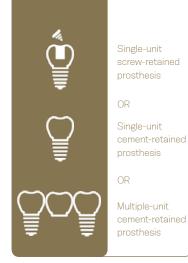


- \bullet Check the fit of milled restoration in the patient's mouth and adapt it, if needed.
- Cement the restoration on the Titanium Base C for GM Exact and insert it into the patient's mouth.

GM Titanium Block for MEDENTiKA Holder

Screw sold separately.

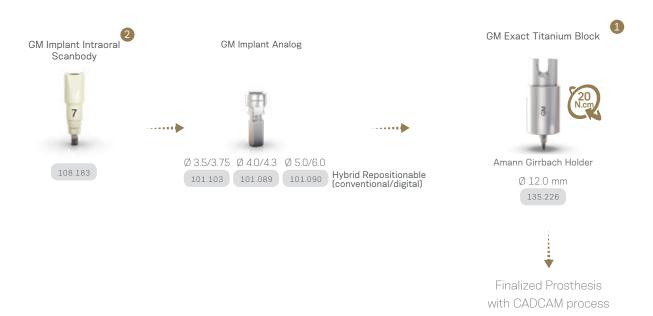

Consider in addition 1.5 - 2.0 mm for the restorative material Minimum interocclusal space of 4.9 mm from the mucosa level


Complete Digital Workflow

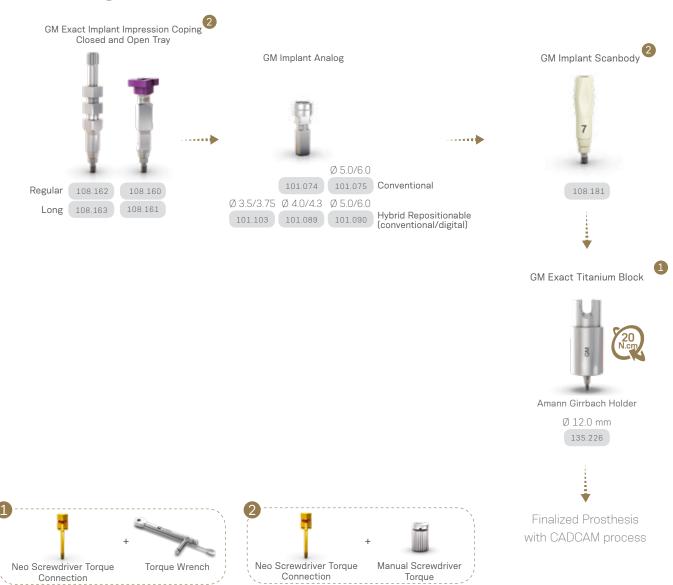
Semi Digital Workflow

Screw sold separately.

040


Accessories

Replacement Sterile Screws



Complete Digital Workflow

Semi Digital Workflow

GM CoCr Abutment

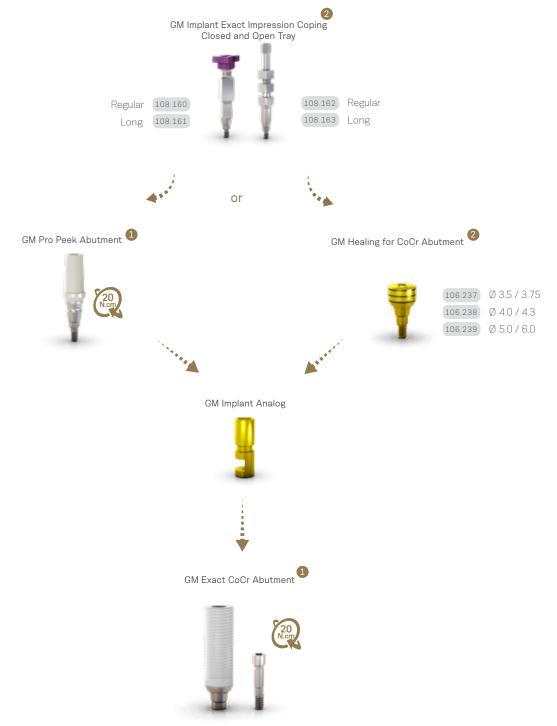
The set includes one GM CoCr Abutment, one Titanium Screw and one GM Implant Analog. Interocclusal height of 12.0 mm. Customizable up to 5.0 mm. Indicated for GM Implants placed at bone leve.

Single-unit screw-retained prosthesis

OR

Single-unit cement-retained prosthesis

Consider in addition 1.5 - 2.0 mm for the restorative material Minimum interocclusal space of 4.9 mm from the mucosa level

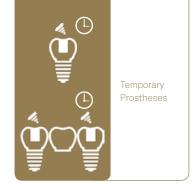

Ø 3.5 / 3.75

118.309 118.310

Ø 4.0 / 4.3 Ø 5.0 / 6.0

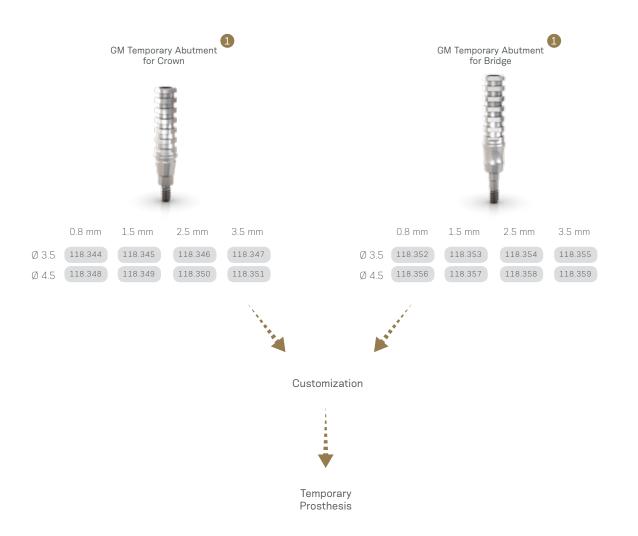
118.311

Installation Sequence




GM Temporary Abutment

Customizable area made of titanium


A minimum height of 4 mm of the customizable area must be kept

With retentive grooves for acrylic material and allows customization

Installation Sequence

GM Pro Peek Abutment

Biocompatible Peek of easy customization

Consider in addition 1.5 - 2.0 mm for the restorative material

Installation Sequence

GM Novaloc

Angled version with removable screw

Accessories

Equipment Box

2010.101

048

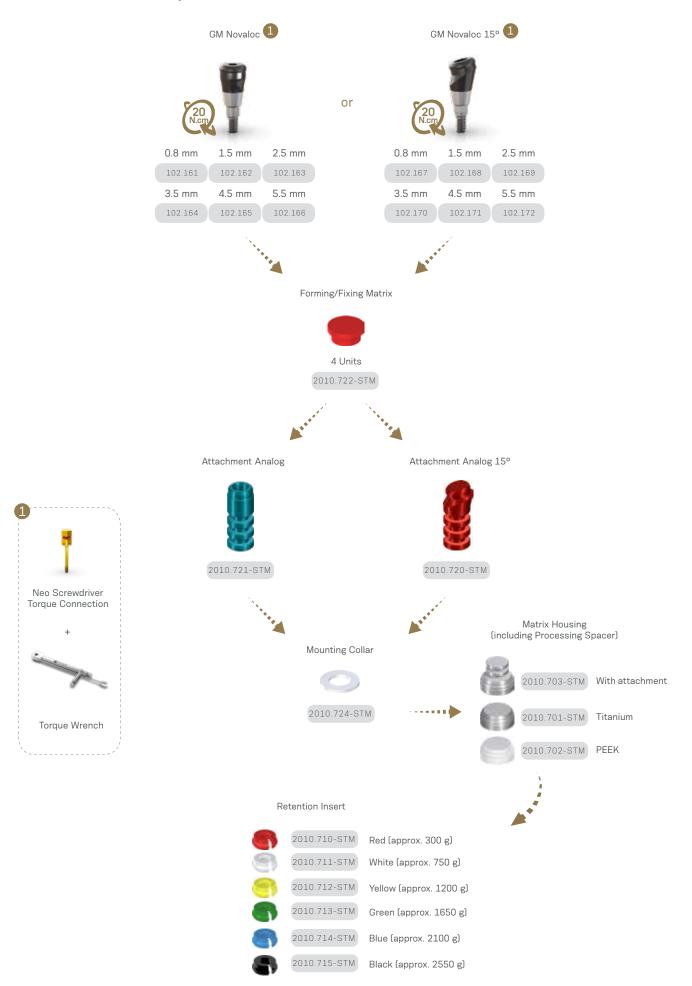
Processing Spacer

2010.723-STM

Mounting Insert

2010.725-STM

Matrix Housing Extractor 2010.751-STM


Demounting Tool for Mounting Inserts for Analogs 2010.731-STM

Mounting and Demounting Tool for Retention Inserts

2010.741-STM

Installation Sequence

Measurements GM Mini Conical Abutment

> 17°

> 30°

Measurements GM Anatomic Abutment

Narrow Anatomic Abutment

Anatomic Abutment

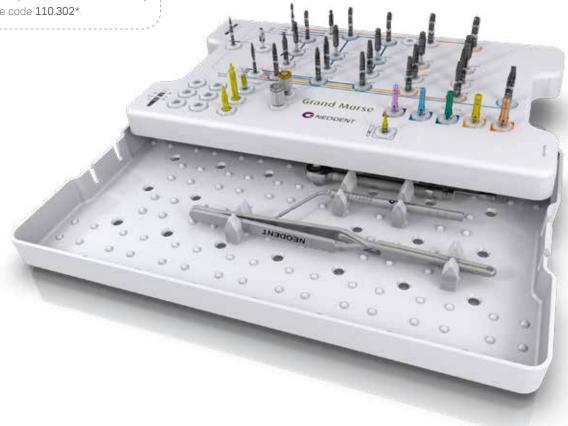
Narrow Anatomic Abutment 17°

Anatomic Abutment 17°

Measurements GM Universal Abutment

> 17°

Grand Morse® Kits


Grand Morse® Surgical Kit

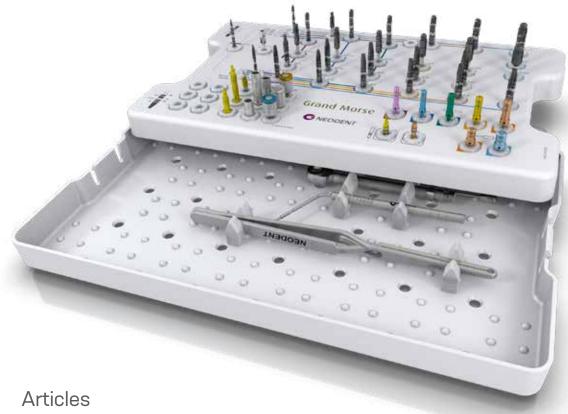
Autoclavable polymer case.

The Kit presents two compositions:

- Complete: for Helix GM®, Drive GM® and Titamax GM® implants;
- Helix®: for Helix GM® implants.

To order the complete composition of the kit, with all instruments already assembled on the tray, use code 110.302*.

Articles


		Complete	Helix®			Complete	Helix®
110.288	GM Surgical Kit Case	Ø		103.399	Tapered Drill 3.5	Ø	✓
103.162	Twist Drill 2.0 Plus	Ø		103.402	Tapered Drill 3.75	Ø	
103.213	Pilot Dril 2.0/3.0 Plus	Ø		103.405	Tapered Drill 4.0	Ø	
103.164	Twist Drill 3.0 Plus	Ø		103.408	Tapered Drill 4.3	Ø	
103.166	Twist Drill 3.3 Plus	Ø		103.411	Tapered Drill 5.0	\bigcirc	
103.167	Twist Drill 3.8 Plus	Ø		103.427	Tapered Drill 6.0	Ø	
103.168	Twist Drill 4.3 Plus	Ø		105.131	GM Implant Driver - Contra-Angle	Ø	
103.163	Twist Drill 2.8 Plus	Ø		104.060	Neo Screwdriver (Medium)	Ø	
103.170	Initial Drill Plus	Ø		105.130	GM Implant Driver - Torque Wrench (Long)	Ø	
103.414	Pilot Drill GM 2.8/3.5	Ø		104.028	Manual Implant Driver - Contra-Angle	\bigcirc	
103.415	Pilot Drill GM 3.0/3.75	•		105.129	GM Implant Driver - Torque Wrench (Short)	Ø	
103.416	Pilot Drill GM 3.3/4.0	Ø		128.019	Direction Indicator 2.8/3.5	Ø	
103.417	Pilot Drill GM 4.3	Ø		128.020	Direction Indicator 3.0/3.75	Ø	
103.418	Pilot Drill GM 4.3/5.0	Ø		128.021	Direction Indicator 3.3/4.0	Ø	
103.419	Tapered Contour Drill 3.5	Ø		128.022	Direction Indicator 3.6/4.3	Ø	
103.420	Tapered Contour Drill 3.75	Ø		128.023	Direction Indicator 4.3/5.0	Ø	
103.421	Tapered Contour Drill 4.0	Ø		128.028	Height Measurer GM	Ø	
103.422	Tapered Contour Drill 4.3	Ø		129.004	Depth Probe	Ø	
103.423	Tapered Contour Drill 5.0	Ø		129.001	Titanium Tweezers	Ø	✓
103.425	Tapered Drill 2.0	Ø		104.050	Torque Wrench	Ø	
				103.426	Drill Extension	Ø	

Grand Morse® and WS Surgical Kit

Autoclavable polymer case.

The Kit allows the use of:

- Grand Morse®: for Helix GM®, Drive GM® and Titamax GM® Implants;
- Complete: for Grand Morse® and WS Implants.

	7 (1 (10100						
		Complete	Grand Morse®		(Complete	Grand Morse®
110.287	GM/WS Surgical Kit Case		Ø	103.402	Tapered Drill 3.75	Ø	
103.162	Twist Drill 2.0 Plus	Ø	Ø	103.405	Tapered Drill 4.0		
103.213	Pilot Dril 2.0/3.0 Plus		Ø	103.408	Tapered Drill 4.3	Ø	
103.164	Twist Drill 3.0 Plus	Ø		103.411	Tapered Drill 5.0		
103.166	Twist Drill 3.3 Plus	Ø	Ø	103.427	Tapered Drill 6.0		
103.415	GM Pilot Drill 3.0/3.75	Ø	Ø	105.131	GM Implant Driver - Contra-Angle		
103.167	Twist Drill 3.8 Plus		Ø	105.002	Smart/WS Implant Driver - Contra-Angle	\bigcirc	
103.168	Twist Drill 4.3 Plus		Ø	104.060	Neo Screwdriver (Medium)	\bigcirc	
103.215	Pilot Drill 4.3/5.3 Plus			105.130	GM Implant Driver GM - Torque Wrench		
103.163	Twist Drill 2.8 Plus		Ø	105.018	Hex Connection - Torque Wrench (Long)	\bigcirc	
103.169	Twist Drill 5.3 Plus			104.028	Manual Implant Driver - Contra-Angle		
103.170	Initial Drill Plus		Ø	104.012	Manual Screwdriver (Medium)		
103.414	Pilot Drill GM 2.8/3.5		Ø	105.129	GM Implant Driver GM - Torque Wrench		
103.416	Pilot Drill GM 3.3/4.0	Ø	Ø	105.001	Smart/WS Implant Driver - Torque Wrench (Short	:) 🕜	
103.417	Pilot Drill GM 4.3	Ø	Ø	128.019	Direction Indicator 2.8/3.5		
103.418	Pilot Drill GM 4.3/5.0	Ø	Ø	128.020	Direction Indicator 3.0/3.75		
103.221	Pilot Drill CM 5.3/6.0 Plus			128.021	Direction Indicator 3.3/4.0	\bigcirc	
103.419	Tapered Contour Drill 3.5		Ø	128.022	Direction Indicator 3.6/4.3		
103.420	Tapered Contour Drill 3.75	Ø	Ø	128.023	Direction Indicator 4.3/5.0		
103.421	Tapered Contour Drill 4.0	Ø	Ø	128.024	WS Direction Indicator 4.3/5.0		
103.422	Tapered Contour Drill 4.3		Ø	128.025	WS Direction Indicator 5.3/6.0		
103.423	Tapered Contour Drill 5.0		Ø	128.028	GM Height Measurer		
103.425	Tapered Drill 2.0		Ø	129.004	Depth Probe	\bigcirc	
103.399	Tapered Drill 3.5	Ø	Ø	129.001	Titanium Tweezers	Ø	
128.029	WS Height Measurer			104.050	Torque Wrench		
				103.426	Drill Extension		Ø

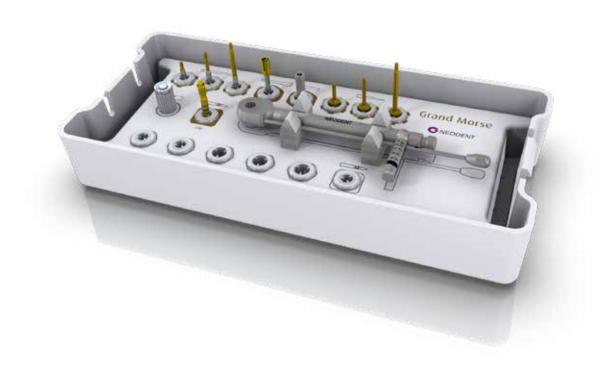
Helix GM® Compact Surgical Kit

Autoclavable polymer case.

The Kit allows the installation of Helix GM® Implants in all bone types.

To order the complete composition of the kit, with all instruments already assembled on the tray, use code 110.303*.

Articles


110.297	Helix GM® Compact Surgical Kit Case
103.170	Initial Drill
103.425	Tapered Drill 2.0
103.399	Tapered Drill 3.5
103.402	Tapered Drill 3.75
103.405	Tapered Drill 4.0
103.408	Tapered Drill 4.3
103.411	Tapered Drill 5.0
103.427	Tapered Drill 6.0
104.060	Neo Manual Screwdriver (Medium)
104.028	Manual Implant Driver - Contra-angle
103.426	Drill Extension
103.419	Tapered Contour Drill 3.5
103.420	Tapered Contour Drill 3.75
103.421	Tapered Contour Drill 4.0
103.422	Tapered Contour Drill 4.3
103.423	Tapered Contour Drill 5.0
105.131	GM Implant Driver - Contra-angle

105.130	GM Implant Driver - Torque Wrench (Long)
105.129	GM Implant Driver - Torque Wrench (Short)
103.414	GM Pilot Drill 2.8/3.5
103.415	GM Pilot Drill 3.0/3.75
103.416	GM Pilot Drill 3.3/4.0
103.417	GM Pilot Drill 4.3
103.418	GM Pilot Drill 4.3/5.0
128.028	GM Height Measurer
128.030	Angle Measurer for Drill 2.0 17°
128.031	Angle Measurer for Drill 2.0 30°
128.019	Direction Indicator 2.8/3.5
128.020	Direction Indicator 3.0/3.75
128.021	Direction Indicator 3.3/4.0
128.022	Direction Indicator 3.6/4.3
128.023	Direction Indicator 4.3/5.0
129.004	Depth Probe
104.050	Torque Wrench

Grand Morse® Prosthetic Kit

Autoclavable polymer case.

To order the complete composition of the kit, with all instruments already assembled on the tray, use code 110.304*.

Articles

110.294	GM Prosthetic Kit Case
105.146	Neo Screwdriver Torque Connection - Contra-angle (Extra-short)
105.135	Neo Screwdriver Torque Connection - Contra-angle (Short)
105.136	Neo Screwdriver Torque Connection - Contra-angle (Medium)
105.138	Hexagonal Prosthetic Driver - Contra-angle
105.137	Hexagonal Prosthetic Driver - Torque Wrench
105.133	Neo Screwdriver Torque Connection (Short) - Torque Wrench
105.132	Neo Screwdriver Torque Connection (Medium) - Torque Wrench
105.134	Neo Screwdriver Torque Connection (Long) - Torque Wrench
104.005	Manual Screwdriver Torque
128.028	GM Height Measurer
104.050	Torque Wrench

Note: Items that compose Neodent® Kits are sold separately. *Available from October 2019.

Grand Morse® Try-In Kit

Autoclavable polymer case.

To order the complete composition of the kit, with all instruments already assembled on the tray, use code 110.305*.

Articles

110.295	GM Try-In Kit Case
114.772	GM Abutment Try-In 3.3X6X0.8
114.773	GM Abutment Try-In 3.3X6X1.5
114.774	GM Abutment Try-In 3.3X6X2.5
114.775	GM Abutment Try-In 3.3X6X3.5
114.776	GM Abutment Try-In 3.3X6X4.5
114.777	GM Abutment Try-In 3.3X6X5.5
114.778	GM Abutment Try-In 4.5X6X0.8
114.779	GM Abutment Try-In 4.5X6X1.5
114.780	GM Abutment Try-In 4.5X6X2.5
114.781	GM Abutment Try-In 4.5X6X3.5
114.782	GM Abutment Try-In 4.5X6X4.5
114.783	GM Abutment Try-In 4.5X6X5.5
114.784	GM Abutment Try-In 17° 3.3X6X1.5
114.785	GM Abutment Try-In 17° 3.3X6X2.5
114.786	GM Abutment Try-In 17° 3.3X6X3.5
114.787	GM Abutment Try-In 17° 4.5X6X1.5

114.788	GM Abutment Try-In 17° 4.5X6X2.5
114.789	GM Abutment Try-In 17° 4.5X6X3.5
114.790	GM Abutment Try-In 30° 3.3X6X1.5
114.791	GM Abutment Try-In 30° 3.3X6X2.5
114.792	GM Abutment Try-In 30° 3.3X6X3.5
114.793	GM Abutment Try-In 30° 4.5X6X1.5
114.794	GM Abutment Try-In 30° 4.5X6X2.5
114.795	GM Abutment Try-In 30° 4.5X6X3.5
114.796	GM Anatomic Abutment Try-In 1.5
114.797	GM Anatomic Abutment Try-In 2.5
114.798	GM Anatomic Abutment Try-In 3.5
114.799	GM Lateral Anatomic Abutment Try-In 1.5
114.800	GM Lateral Anatomic Abutment Try-In 2.5
114.801	GM Lateral Anatomic Abutment Try-In 3.5
104.058	Neo Manual Screwdriver (Short)
128.028	GM Height Measurer

NEODENT® NEOARCH® IMMEDIATE FIXED FULL-ARCH SOLUTION

Increasing expectations for shortened treatment duration represent a significant challenge for dental professionals especially in patients with anatomical deficiencies. The Neodent® Implant System offers an optimized solution for immediate fixed treatment protocols in edentulous patients even with severe atrophic maxilla. Neodent® NeoArch® allows to significantly improve patient satisfaction and quality of live by immediately restoring function and esthetics ⁽¹⁰⁾.

Immediate function resulting in shorter treatment times.

- Different implants techniques to avoid the use of grafting procedure[11].
- Optimized implant design to achieve high primary stability in all bone types^[12].

Immediate natural-looking esthetics with versatile restorative options.

- A broad gingival height abutment range to cater the patient's needs.
- Options of straight and angled abutments (17°, 30° and 45°).

Immediate peace of mind thanks to a stable foundation.

- One connection regardless of the diameters.
- Unique connection combining Platform Switching associated with a deep 16° Morse taper including an internal indexation.

SOLUTIONS FOR ALL CLINICAL NEEDS

A implant system designed for predictable immediate treatments in all bone types even with different conditions of the residual alveolar bone.

Helix GM® Long

PRODUCT FEATURES:

Implants Description

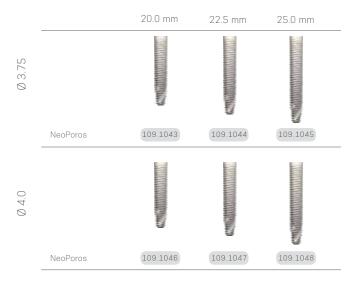
- Full dual tapered implant
- Hybrid contour with a cylindrical coronal part and conical on the apical area;
- Active apex including a soft rounded small tip and helicoidal flutes.
- Dynamic progressive thread design: from compressing trapezoida threads on the coronal area to self-tapping threads on the apical part;
- Double lead threaded implant;
- Holder integrated to the implant body, which adapt in the packaging:
- Neoporos surface;
- Grand Morse® connection

Indications:

• Indicated for surgical intraoral installation, in bone types III/IV for cases of total or partial edentulism and for multiple-unit prostheses.

Drilling features

- For infraosseous positioning it is recommended to add 1 to 2
 mm in length to the implant during surgical instrumentation.
- Drilling speed: 500-800 rpm:
- Implant insertion speed: 30 rpm
- Maximum torque for implant placement: 60 N cm


Available with:

^{*} Drills available for both conventional and Guided Surgery procedures.

Helix GM® Long implants

GM Healing Abutment

.6						
Profile	0.8 mm	1.5 mm	2.5 mm	3.5 mm	4.5 mm	5.5 mm
Ø 3.3	106.207	106.208	106.209	106.210	106.211	106.212
Ø 4.5	106.213	106.214	106.215	106.216	106.217	106.218

^{::} Use the manual Neo Screwdriver (104.060); :: Do not exceed the insertion torque of 10 N.cm

GM Customizable Healing Abutments

Profile 1.5 mm	2.5 mm	3.5 mm	4.5 mm	5.5 mm	6.5 mm
Ø 5.5 106.223	106.224	106.225	106.226	106.227	
Ø 7.0	106.228	106.229	106.230	106.231	106.232

GM Cover Screw

0 mm	2 mm
117.021	117.022

:: Use the manual Neo Screwdriver (104.060); :: Do not exceed the insertion torque of 10 N.cm.

Zygoma **GM**TM

PRODUCT FEATURES:

Implants Description

- Hybrid contour with a cylindrical coronal part and conical or the apical area;
- The apex has a conical profile with a spherical tip and three equally spaced helical flutes;
- Trapezoidal thread and progressive increase of the thread depth at the apical portion;
- Tissue Protect: portion with interrupted thread, near the cervical region, indexed to the hexagon face;
- Holder integrated to the implant body, which adapt in the packaging:
- · Neoporos surface;
- Grand Morse® connection

Indications:

 Indicated for surgical procedures in the the posterior region of the maxilla and in the zygoma, in cases of severe maxilla resorption. Zygomatic Implants may be used in immediate loading procedures when there is good primary stability and appropriate occlusal loading.

Drilling features:

- Drilling speed: 800-1200 rpm;
- Lateral Direction Drill speed: 600-800 rpm;
- Implant insertion speed: 30 rpm;
- Maximum torque for implant placement: 60 N.cm

Available with:

^{*} Drill available for both conventional and Guided Surgery procedures.

Zygoma **GM™** Implants

GM Cover Screw

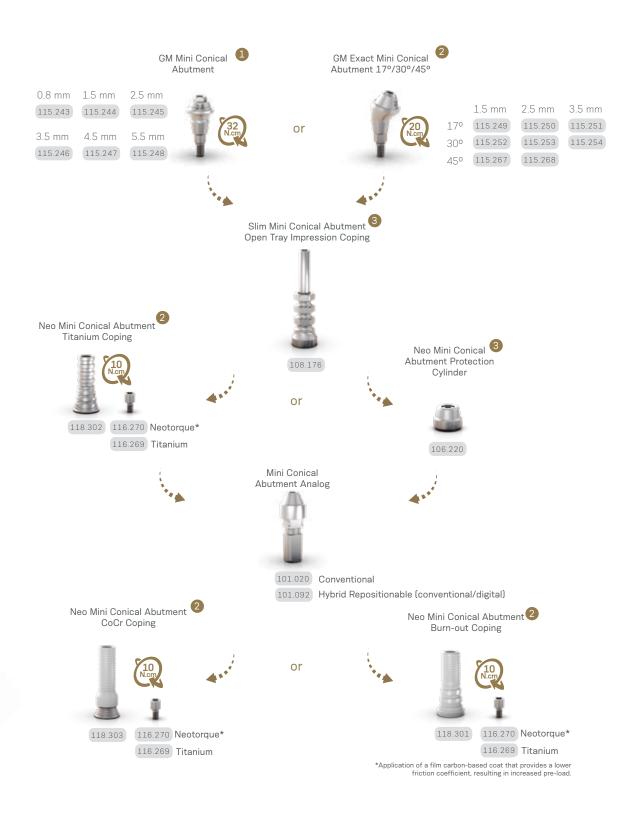
0 mm 2 mm (117.021) 117.022

:: Use the manual Neo Screwdriver (104.060); :: Do not exceed the insertion torque of 10 N.cm.

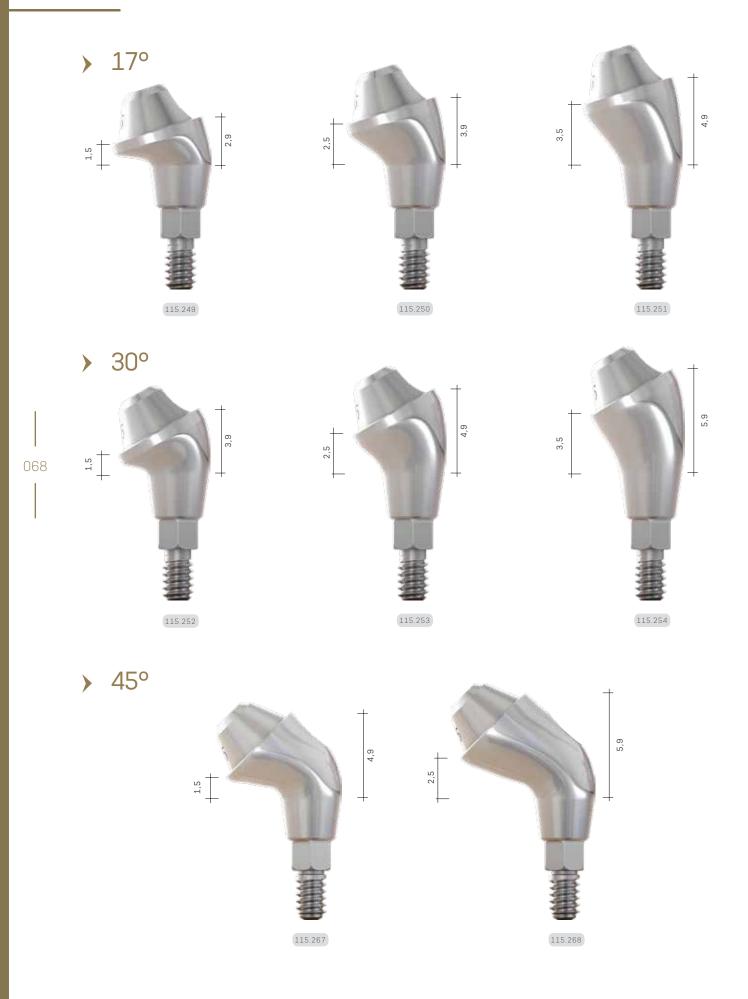
GM Mini Conical Abutment

Consider in addition 1.5 - 2.0 mm for the restorative material

Minimum interocclusal space of 4.5 mm from the mucosa level for straight abutments.



Mini Conical Abutment Polishing Protector


123.008

Installation Sequence

Measurements GM Mini Conical Abutment

Kits for NeoArch®

071

Helix GM® Long Compact Surgical Kit

Autoclavable polymer case.

Articles

110.300	Helix GM® Long Compact Surgical Kit Case	103.464	Twist Drill For Helix GM® Long 4.0mm
103.395	Guided Surgery Drill 1.3mm	129.021	Helix GM® Long X-ray Positioner
125.100	Guided Surgery Guide Clamp	128.032	GM Angle Measurer 17°
125.140	Drill Guide For NGS Helix GM® Long 2.0/2.35mm	128.033	GM Angle Measurer 30°
125.141	Drill Guide For NGS Helix GM® Long 3.75/4.0mm	128.034	GM Angle Measurer 45°
103.459	Twist Drill For NGS Helix GM® Long 2.35mm	105.143	Regular Guided Surgery GM Connection for Torque Wrench
103.460	Twist Drill For NGS Helix GM® Long 3.75mm	105.140	Regular Guided Surgery GM Connection - Contra-angle
103.461	Twist Drill For NGS Helix GM® Long 4.0mm	104.060	Neo Manual Screwdriver (medium)
103.453	Helix GM® Long Initial Drill 2.0mm	105.129	GM Implant Driver - Torque Wrench (short)
103.462	Twist Drill For Helix GM® Long 2.35mm	105.131	GM Implant Driver - Contra-angle
103.463	Twist Drill For Helix GM® Long 3.75mm	104.050	Torque Wrench

Zygoma GM™ Surgical Kit

Autoclavable polymer case.

Articles

110.299	Zygoma GM™ Surgical Kit Case	129.022	Zygoma GM™ Probe 2.35mm
103.395	Guided Surgery Drill 1.3mm	129.023	Zygoma GM™ Probe 4.0mm
125.100	Guided Surgery Guide Clamp	128.032	GM Angle Measurer 17°
125.139	Drill Guide For Ngs Zygoma GM™ 2.35mm	128.033	GM Angle Measurer 30°
103.454	Twist Drill For Ngs Zygoma GM™ 2.35mm	128.034	GM Angle Measurer 45°
103.455	Twist Drill For Zygoma GM™ 2.35mm	128.028	GM Height Measurer
103.456	Twist Drill For Zygoma GM™ 3.75mm	104.060	Neo Manual Screwdriver (medium)
103.457	Twist Drill For Zygoma GM™ 4.0mm	105.129	GM Implant Driver - Torque Wrench (short)
103.458	Lateral Direction Drill For Zygoma GM™ 4.0mm	105.131	GM Implant Driver - Contra-angle
103.465	Pilot Twist Drill For Zygoma GM™ 2.3/3.2mm	104.050	Torque Wrench
104.063	Zvgoma GM™ Installation Driver		

Grand Morse® Instruments

Initial Drill

- :: Available in surgical steel;
- :: 2.0mm diameter.

103.170

Tapered Drills

- :: Available in surgical steel; :: Drill sequence for Helix GM® and Drive GM® Implants.

Short 31 mm

Regular 35 mm

Long 43 mm

Ø 2.0 Ø 3.5 103.400

103.399

103.401

103.425

Ø 3.75 103.403

103.402

103.404

Ø 4.0 103.406

103.405

103.407

Ø 4.3 Ø 5.0 103.412 103.409

Ø 6.0

103.427

103.408 103.411

103.410 103.413

GM Tapered Contour Drills

:: For preparing the implant bed in bone types I and II for Helix GM® Implants.

Ø 3.5+ Ø 3.75+ Ø 4.0+ Ø 4.3+ Ø 5.0+ 103.419 103.420 103.421 103.422 103.423

Pilot Drills

- :: Available in surgical steel;
- :: Increasing the surgical alveolus diameter ridge, easing the penetration of the next drill or the implant.

Ø 2/3 Ø 2.8/3.5 Ø 3/3.75 Ø 3.3/4 Ø 3.6/4.3 103.415

103.416

Ø 4.3/5 Ø 3.8/4.3 Ø 4.3/5.3 Ø 5.3/6

103.414

103.213

103.418 103.214 103.215 103.221

- :: Available in surgical steel;
- :: Drill sequence for Titamax GM® Implants.

Short 31 mm

Regular 35 mm

Long 43 mm

	Ø 2.0	Ø 2.8	Ø 3.0	Ø 3.3	Ø 3.8	Ø 4.3
n	103.222	103.223	103.224	103.225	103.226	103.227
n	103.162	103.163	103.164	103.166	103.167	103.168
n	103.228	103.229	103.230	103.231		

Helix GM® Long Drills

- :: Available in surgical steel;
- :: Drill sequence for Helix GM® Long implants.

Initial	Ø 2.35	Ø 3.75	Ø 4.0
103.453	103.462	103.463	103.464

Helix GM® Long Drills for Guided Surgery

- :: Available in surgical steel;
- :: Drill sequence for Helix GM® Long implants on Guided Surgery.

Ø 2.35	Ø 3.75	Ø 4.0
102 450	102 460	102 46

076

Zygoma GM™ Drills

- :: Available in surgical steel; :: Drill sequence for Zygoma GM™ implants.

Ø 2.35	Pilot Ø 2.3/3.2	Ø 3.75	Ø 4.0
103.455	103.465	103.456	103.457

Zygoma GM™ Lateral Direction Drill

- :: Available in surgical steel; :: Spherical tip with guide pin and helical blades for preparing the site for the implant placement in the exteriorized technique.

Ø 4.0

103.458

Zygoma GM™ Drill for Guided Surgery

- :: Available in surgical steel; :: After using the first drill, the surgical guide must be removed and the conventional protocol must be started.

Ø 2.35

Direction Indicators

- :: Available in titanium;
- :: Instrument to guide the implant position;
- .: Diameter of central band corresponds to GM Implant diameter;
- :: Smaller side to be used after \emptyset 2.0mm drill;
- :: Larger side to be used after the last drill before implant installation.

3.3/4.0

128.021

3.6/4.3

128.022

4.3/5.0

128.023

2.8/3.5

128.019

3.0/3.75

128.020

Drill Extension

- :: Available in surgical steel;
- :: Fit the drill directly into the Drill Extension.

103.426

GM Height Measure

- :: Available in titanium;
- :: For selecting GM prosthetic abutments;
- :: Marks corresponding to transmucosa heights.
- :: Can be used as X-Ray Positioner.

128.028

GM Implant Driver - Contra-Angle

- :: To capture the implant directly from the packaging;
- :: To place GM Implants with contra-angle, or attached to a manual driver for contra-angle connections (104.028) for hand placement;
- :: With six dimples to indicate the hex index face position;
- :: The laser marks indicate the depth of implant placement, bone level, 1 and 2mm infra-bone and last marking (3mm) biological space;
- :: Maximum torque 35 N.cm.

105.131

GM Implant Driver - Torque Wrench

- :: To place GM Implants with the Torque Wrench (104.050);
- :: With six marks to indicate the hex index face position;
- :: The laser marks indicate the depth of implant placement, bone level, 1 and 2mm infra-bone and last marking (3mm) biological space;
- :: Maximum torque: 60 N.cm.

Short Long 22 mm 30 mm 105.129 105.130

Manual Implant Drivers

:: Available in surgical steel;

:: For Contra-angle connections: connected to GM Implant Driver, it becomes a manual driver for implant placement.

:: For Torque Wrench connections: connected to screwdrivers, it provides manual torque.

Contra-angle Connections Torque Wrench Connections

104.028

104.005

Neo Screwdriver Torque Connection - Torque Wrench

:: Available in surgical steel;

:: Yellow color for line identification.

:: Long Neo Screwdriver Torque Connection - Wrench (105.134) recommended for Impression Copings and Copings for screw-retained prostheses.
 Short 16.5 mm
 Medium 22 mm
 Long 32 mm

 105.133
 105.132
 105.134

078

Neo Screwdriver

:: Available in surgical steel;

:: Yellow color for line identification.

:: Long Neo Manual Screwdriver (104.059) recommended for Impression Copings and Copings for screw-retained prostheses.
 Short 21 mm
 Medium 25 mm
 Long 37 mm

 104.058
 104.060
 104.059

:: Av

Neo Screwdriver Torque Connection - Contra-angle

:: Available in surgical steel;

:: Yellow color for line identification;

:: Medium Neo Screwdriver Torque Connection - Contraangle (105.136) recommended for Impression Copings and Copings for screw-retained prostheses.

:: Extra Short Neo Screwdriver Torque Connection Contra-angle (105.146) recommended for Impression
Copings, Cover Screws and Healing Abutments.

Extra

Short 16.5 mm Short 24 mm

Medium 31 mm

105.136

Hexagonal Prosthetic Driver

:: Available in surgical steel;

:: To install and apply torque over straight GM Mini Conical Abutments and GM Micro Abutments;

:: Yellow color for line identification;

:: Hexagonal Prosthetic Driver for Contra-angle: to install GM Mini Conical Abutment (straight).

Torque Wrench

Contra-angle

105.137

Angled Solution Screwdriver fo Torque Wrench

- :: To place GM Titanium Bases for Angled Solution with torque wrench (104.050); :: Maximum torque of 20 N.cm.

Short	Regular	Long
16.5 mm	22.5 mm	28.5 mm
105.150	105.151	105.152

Angled Solution Screwdriver for Contra-angle

- :: To place GM Titanium Bases for Angled Solution with contra-angle;
- :: Maximum torque of 20 N.cm.

Short	Regular	Long
20 mm	26 mm	32 mm
105.147	105.148	105.149

GM Bone Profile Drill with Guide

- :: Available in surgical steel;
- :: Used in the surgical second step; :: Conforms the bone around the implant platform, preparing the emergence profile to be suitable to prosthetic components.

103.424

Angle Measurer for Drill 2.0

- :: Available in titanium; :: Angles: 17° and 30°; :: To select and plan the abutments angulation
- during surgical procedures;
- :: Suggested use: after Twist Drill 2.0.

17° 30° 128.030 128.031

GM Angle Measurer

- :: Available in titanium; :: Angles: 17°, 30° and 45°; :: To a more accurate selection and planning of the abutments angulation during the prosthetic phase.

17° 30° 45° 128.032 128.033 128.034

Helix GM® Long Drill Guide for Guided Surgery

:: Instrument with the purpose of guiding the drills during the bone bed preparation according to the guided surgery technique.

Ø 2.0/2.35 Ø 3.75/4.0

125.140

125.141

Zygoma GM™ Drill Guide for Guided Surgery

:: Instrument with the purpose of starting the Zygomatic Surgery guided.

Ø 2.35

125.139

Helix GM® Long X-ray Positioner

:: Indicated for evaluation of the osteotomy depth in the implant placement procedure.

129.021

Zygoma GM™ Probes

- Available in Stainless Steel;
- The probe for the drill Ø2.35 mm has a tip design in L;
- :: The probe for the drill Ø4.0 mm has a tip with a design similar to the apex of the drill that allows identifying the correct drilling depth for implant anchorage.

Ø 2.35

Ø 4.0

129.022

129.023

Zygoma GM™ Installation Driver

:: Instrument for application of manual torque.

104.063

Torque Wrench

- :: Available in surgical steel;
- :: Fitting for square connections;
- :: Collapsible Wrench that allows for proper assembly cleaning;
- :: For full instructions see page 99.

Neodent® Techniques

084

Complete: Helix® and Drive® Grand Morse® Implants portfolio;

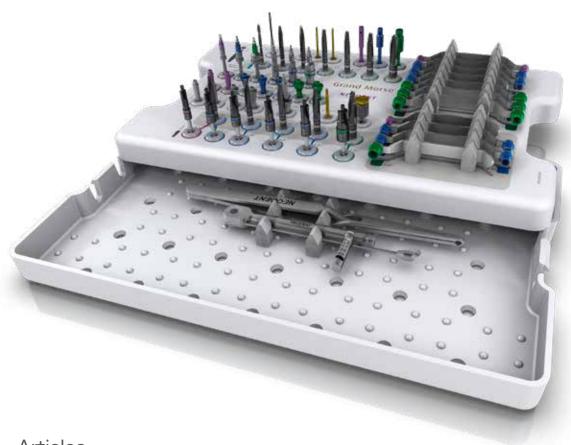
Convenient: Color-coded instruments and symbol-marked;

Flexible: 2 sleeve height options;

Complatible with major guided surgery software.

> Sleeves for Neodent® Guided Surgery System

Available in titanium; Sold in bags with 10 units each.


Sleeve for Narrow Guided Surgery System	125.135
Sleeve for Regular Guided Surgery System	125.136
Sleeve for Wide Guided Surgery System	125.137
Sleeve of Setter for Guided Surgery System	125.138

▶ Grand Morse® Guided Surgery Surgical Kit

Autoclavable polymer case.

The Kit allows the use of Helix GM® and Drive GM® Implants in the Guided Surgery technique.

Articles

110.296	GM Guided Surgery Surgical Kit Case
103.395	Guided Surgery 1.3
125.100	Guided Surgery Guide Clamp
103.429	Narrow Guided Surgery Punch - Contra-Angle
103.430	Regular Guided Surgery Punch - Contra-Angle
103.431	Wide Guided Surgery Punch - Contra-Angle
103.432	Guided Surgery Drill 2.0
103.433	Tapered Guided Surgery Drill 3.5*
103.434	Tapered Guided Surgery Drill 3.75*
103.435	Tapered Guided Surgery Drill 4.0*
103.436	Tapered Guided Surgery Drill 4.3*
103.437	Tapered Guided Surgery Drill 5.0*
103.438	Tapered Guided Surgery Drill 6.0*
105.139	Narrow Guided Surgery GM Connection - Contra-angle
105.140	Regular Guided Surgery GM Connection - Contra-angle
105.141	Wide Guided Surgery GM Connection - Contra-angle
105.142	Narrow Guided Surgery GM Connection for Torque Wrench
105.143	Regular Guided Surgery GM Connection for Torque Wrench
105.144	Wide Guided Surgery GM Connection for Torque Wrench
125.130	Narrow Guided Surgery GM Guide Stabilizer
125.131	Regular Guided Surgery GM Guide Stabilizer
125.132	Wide Guided Surgery GM Guide Stabilizer
125.133	Narrow Guided Surgery GM Guide Stabilizer (Long)
125.134	Regular Guided Surgery GM Guide Stabilizer (Long)
105.145	Guided Surgery GM H11 Connection for Torque Wrench
105.136	Neo Screwdriver Torque Connection - Contra-angle (Medium)

104.060	Neo Manual Screwdriver (Medium)
103.439	Tapered Contour Guided Surgery Drill 3.5*
103.440	Tapered Contour Guided Surgery Drill 3.75*
103.441	Tapered Contour Guided Surgery Drill 4.0*
103.442	Tapered Contour Guided Surgery Drill 4.3*
103.443	Tapered Contour Guided Surgery Drill 5.0*
103.444	Narrow Guided Surgery GM Pilot Drill 3.5
103.445	Regular Guided Surgery GM Pilot Drill 3.5
103.446	Guided Surgery GM Pilot Drill 3.75
103.447	Guided Surgery GM Pilot Drill 4.0
103.448	Guided Surgery GM Pilot Drill 4.3
103.449	Guided Surgery GM Pilot Drill 5.0
125.119	Narrow Guided Surgery Drill Guide 2.0/3.5
125.121	Regular Guided Surgery Drill Guide 2.0/3.5
125.122	Regular Guided Surgery Drill Guide 3.75/4.0
125.123	Regular Guided Surgery Drill Guide 4.3
125.126	Wide Guided Surgery Drill Guide 2.0/3.5
125.127	Wide Guided Surgery Drill Guide 4.0/4.3
125.128	Wide Guided Surgery Drill Guide 5.0/6.0
125.120	Narrow Tapered Contour Guided Surgery Drill Guide 3.5
125.124	Regular Tapered Contour Guided Surgery Drill Guide 3.5/3.75
125.125	Regular Tapered Contour Guided Surgery Drill Guide 4.0/4.3
125.129	Wide Tapered Contour Guided Surgery Drill Guide 5.0
129.001	Titanium Tweezers
104.050	Torque Wrench

Guided Surgery Drill 1.3 and Guide Clamp

- :: Drill available in surgical steel;
- :: Guide Clamp available in titanium; :: For initial fixation of the surgical guide.

Drill Guide Ø 1.3 Clamp 103.395 125.100

Guided Surgery Tapered Drills

- :: Available in surgical steel;
- :: Drill sequence for Helix GM® and Drive GM® Implants in the guided surgery technique;
- Fully guided technique with Short Drills indicated for 8, 10 or 11.5 mm long implants.

	Ø 2.0	Ø 3.5	Ø 3.75	Ø 4.0	Ø 4.3	Ø 5.0	Ø 6.0
Short 36.5 mm	103.475	103.476	103.477	103.478	103.479	103.480	103.481
Regular 41 mm	103.432	103.433	103.434	103.435	103.436	103.437	103.438

Guided Surgery Tapered Contour Drills

- :: Available in surgical steel;
- :: Drill sequence for Helix GM® Implants in the guided surgery technique for bone types I or II;
- :: Fully guided technique with Short Drills indicated for 8, 10 or 11.5 mm long implants.

	Ø 3.5+	Ø 3.75+	Ø 4.0+	Ø 4.3+	Ø 5.0+
Short 36.5 mm	103.482	103.483	103.484	103.485	103.486
Regular 41 mm	103.439	103.440	103.441	103.442	103.443

Guided Surgery GM Pilot Drills

086

- :: Available in surgical steel; :: Color-coded according to the sleeve diameter;
- Recommended for Helix GM® in bone types I or II;
- Optional for Helix GM® and Drive GM® in bone types III or IV.

	Ø 3.5	Ø 3.75	Ø 4.0	Ø 4.3	Ø 5.0
Narrow	103.444				
Regular	103.445	103.446	103.447	103.448	
Wide					103.449

Guided Surgery Punch - Contra-Angle

- :: Available in titanium;
- :: Color-coded according to the sleeve
- diameter;
- To remove the mucosa before beginning the osteotomy.

Narrow	Regular	Wide
103.429	103.430	103.431

Ø 2.0/3.5 Ø 3.75/4.0 Ø 4.0/4.3

Narrow 125.119

Guided Surgery Drill Guides

- Available in titanium and stainless steel;
- Color-coded according to the sleeve diameter;
- To fit in the sleeve in the surgical guide;
- To be used with correspondent drill diameter and type.

Regular	125.121	125.122	125.123	
Wide	125.126	12	5.127	125.128
	Ø 3.5+	Ø 3.5+/3.75+	Ø 4.0+/4.3+	Ø 5.0+
Narrow	125.120			
Regular		125.124	125.125	
Wide				125.129
Wide				125.129

Ø 4.3

Ø 5.0/6.0

NEODENT

Guided Surgery GM Connection - Contra-Angle

- :: Available in stainless steel;
- :: Color-coded according to the sleeve diameter;
- :: To start the implant placement through the surgical guide.

Narrow	Regular	Wide	
105.139	105.140	105.141	

Guided Surgery GM Connection - Torque Wrench

- :: Available in stainless steel;
- :: Color-coded according to the sleeve diameter;
- :: To finish the implant placement through the surgical guide.

Narrow	Regular	Wide	
105.142	105.143	105.144	

Guided Surgery GM H 11 Connection - Torque Wrench

- :: Available in stainless steel; :: To finish the implant placement through the surgical guide;
- :: To be used when the H11 sleeve height is chosen.

105.145

Guided Surgery Guide Stabilizers

- :: Available in titanium;
- :: Color-coded according to the sleeve diameter;
- :: Additional fixation of the surgical guide.

Wide Regular Narrow 125.131 125.130

Guided Surgery Guide Stabilizers - Long

- :: Available in titanium;
- :: Color-coded according to the sleeve diameter;
- :: Additional fixation of the surgical guide;
- :: To be used when the H11 sleeve height is chosen.

Narrow Regular 125.133 125.134

Posterior Implant Solution

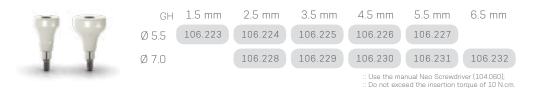
Immediate placement in challenging post extraction sockets;

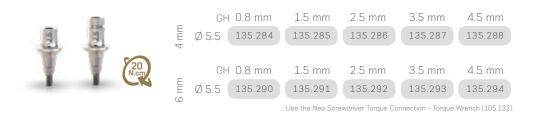
Immediate implant placement with optimized wide implant design:

- Designed to achieve high primary stability in wide post extraction sockets;
- Grand Morse® Helix® the Unbeatable Versatility.

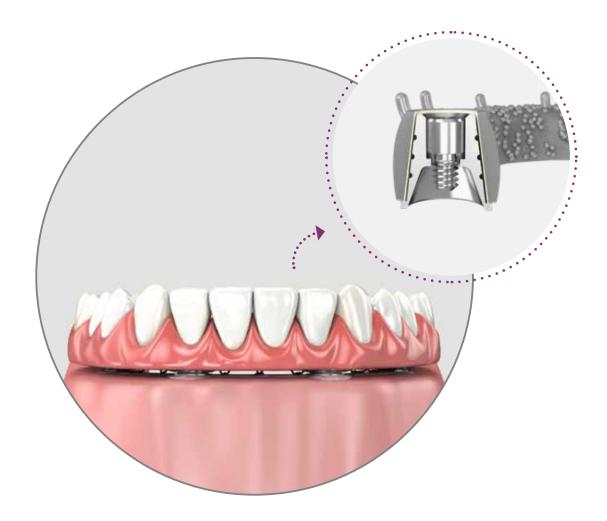
Deliver natural-looking esthetics thanks to an optimized wide emergence profile design:

- A wide customizable healing abutment was designed to maintain the molar emergence profile;
- Consistent emergence profile for excellent esthetics outcomes.




Helix GM® Ø 6.0 Implants

GM Customizable Healing Abutment



GM Exact Titanium Base

GM Titanium Base Burn-out Coping

Neo Mini Conical Abutment One Step Hybrid Copings

:: For installation, use the Neo Torque Connection (105.132); :: For torque control, use Torque Wrench (104.050).

Burn-out Brass Titanium 118.340 118.331 118.330

Neo Micro Conical Abutment One Step Hybrid Copings

:: For installation, use the Neo Torque Connection (105.132);

:: For torque control, use Torque Wrench (104.050).

Burn-out Brass Titanium 118.341 118.333 118.332

Neo Working Screw One Step Hybrid

:: For laboratory use.

Demonstration Sequence

Regularize the alveolar ridge.

Surgical drilling completed, obtaining adequate distance from distal implant in relation to the mental foramen with 7 mm Space Planning Instrument.

Placement of 4 Neodent® implants, according to their indication.

Placement of corresponding Neodent® Abutments.

Placement of Impression Copings, splinted with acrylic

Positioning of Multifunctional Guide to obtain intermaxillary correlation. Soft silicone is injected to take the soft tissue impression.

Removal of Multi-Funcional Guide and placement of Analogs to the impression copings.

Working model with artificial gum.

Burn-out One Step Hybrid Coping, Brass One Step Hybrid Coping, grooved Titanium One Step Hybrid Coping. The last one with lower dimensions than the brass one, which compensates using the mill.

Brass Copings are placed over analogs, then Burn-out Copings are fixed by working screws.

Castable ring with waxed framework.

Cast framework.

Place the framework over the stone model.

Please note cementing area.

Cementing with Panavia the structure over the titanium copings.

Final inside-mouth view.

Distal Bar Technique

Technique used to ease mandible rehabilitation, through a provisional hybrid type prostheses supported by implants.

Neo Distal Bar Coping

- :: Available in titanium;
- Retainers to ease joining with acrylic resin; Recommended torque: 10 N.cm;
- :: For torque, use Neo Screwdriver (105.132)

118.308

Neo Distal Bar

:: Recommended for distal Implants to reinforce the cantilever.

125.116

Polishing Protector

- :: Available in surgical steel;
- :: Protection for the lab polishing.

095

Demonstration Sequence

Neodent® Abutments placed.

Prosthesis wearing, keeping posterior region integrity.

Place the copings into the central Implants and Distal Bar to distal Implants.

Proof of inferior prostheses wearing (centered occlusion position, no interference on copings).

Placement of rubber dam over copings to protect soft tissues.

Apply selfpolymerizing acrylic resin on and between the copings.

Apply to worn area in lower prosthesis, repositioning inside mouth. Keep patient in occlusion until total polymerization.

Remove the inferior prosthesis after resin is polymerized. Copings already captured.

Adjustments, finishing and polishing procedures of inferior prosthesis with polishing protectors.

Placed provisional implant supported prosthesis.

Final insidemouth posterior view.

Digital Solutions

Visit www.neodent.com/cadcam to download the digital files to work with Neodent® Titanium Bases, Titanium Blocks, Abutments, Mini Conical Abutments, Micro Abutments, Universal Abutments, One Step Hybrid Copings, Scanbodies and Hybrid Repositionable Analogs. Libraries are available for the following companies: exocad GmbH, Amann Girrbach AG Inc, Dental Wings Inc and 3Shape A/S.

Scanbody

Neodent® Scanbodies can be used for scanning and digitalization of the patient or model providing accuracy in determining the analog position.

108.183 GM Exact Implant Intraoral Scanbody GM Exact Implant Scanbody (for model) GM Mini Conical Abutment Scanbody GM Micro Abutment **GM** Abutment

Hybrid Repositionable Analog

Neodent® Hybrid Repositionable Analogs can be used in prototyped models, produced by 3D printers, or conventional plaster models.

101.103 101.091 101.092 101.097 101.098 101.099 101.100 101.101

GM Hybrid Repositionable Analog 3.5/3.75 GM Hybrid Repositionable Analog 4.0/4.3 GM Hybrid Repositionable Analog 5.0/6.0 Micro Abutment Hybrid Repositionable Analog Mini Conical Abutment Hybrid Repositionable Analog Universal Abutment Hybrid Repositionable Analog 3.3X4 Universal Abutment Hybrid Repositionable Analog 3.3X6 Universal Abutment Hybrid Repositionable Analog 4.5X4 Universal Abutment Hybrid Repositionable Analog 4.5X6 GM Abutment Hybrid Repositionable Analog

General Instruments

Torque Wrench

- :: Available in surgical steel; :: Extremely safe (lower than 5% variation);
- :: Fitting for square connections;
- :: Collapsible Wrench that allows for proper assembly cleaning.

104.050

Operation Instructions

The Neodent® Torque Wrench was designed to allow the necessary torque to be applied and simultaneous verification of that torque with the same Instrument.

All that is needed is to apply force to the wrench handle 1 (never the wrench body) until the value marked on the LATERAL SCALE 2 corresponds to the desired torque

The Neodent® Torque Wrench comes with pre-calibrated torques.

The wrench function works in both directions, by simply pulling and turning the driver's pin 180°. However, the torque measurements work only lockwise.

•WARNING: When inverting the torque direction, the gear may come loose from the driver body and fall. Therefore, this inversion should only be done with the driver connected to a part or outside the patient's mouth.

Titanium Tweezers

- :: To handle implants;
- :: New Tweezer system that prevents deviation in the active bit; :: Millimeter scale for checking
- during procedures;
- :: Self-locking implant.

Depth Probe

- :: Available in titanium; :: To probe preparations and analyze depth;
- :: Millimeter scale for checking during procedures.

7 and 9 mm Space Planning Instrument

- :: Available in surgical steel;
- :: Recommended for prosthetic/ surgical planning. :: 7 and 9 mm marks.

Surgical Labial Retractor

- :: Available in surgical steel; :: Rounded edges to minimize surgical
- trauma.

Columbia Retractor

:: Available in surgical steel; :: Rounded edges to minimize surgical trauma.

124.003

Bivers Handle

Concave Osteotome

- :: Available in surgical steel;
- :: Concave active cutting bit for nontraumatic lifting the floor of the maxillary sinus;
- Used to prepare the surgical alveolus for Implant placement in the posterior maxillary region with low bone height;
- :: Marks from 7 to 17mm.

1.8 mm	2.5 mm	3.0 mm	3.5 mm	4.0 mm	4.5 mm
110.154	110.155	110.156	110.157	110.158	110.159

Convex Osteotome

- Available in surgical steel;
- Convex active bit;
- Used when the bone width is insufficient, demanding bone compression and expansion before placing the implant;
- :: Marks from 7 to 17mm.

Osteotomes Kit Case

- :: Available in polymer;
- Autoclavable;
- :: Osteotomes sold separately.

Surgical Hammer

- :: Available in surgical steel; :: Polymer active bit; :: Used in compactors and expanders; :: Weight: 130g.

Trephine Bur

- :: Available in surgical steel; :: Collecting bone cylinder; :: Implant removal.

Ø 3.3 Ø 4.1 Ø 4.3 Ø 5.0 Ø 8.0 103.051 103.026 103.087 103.027 103.028

Sinus Lift Curette

- :: Available in surgical steel; :: Used to displace the Sinusal Membrane.

Complement Case

- :: Available in autoclavable polymer; :: Used to organize drills and auxilliary connections.

110.270

Disposable Bone Collector

- :: Available in polymer;
 :: To collect autogenous bone;
 :: Single use;
 :: Adaptable to vacuum pump;
 :: Includes two disposable sieves;
 :: Use second tip for saliva suction (watch for contamination).

Collector

107.003

Sieve

Handle Implant Driver

:: Available in stainless steel; :: Manual implant placement.

Analog Handle

:: Used for tightening analogs and milling prosthetic abutments.

Prosthetic Surgical Guide

- :: Available in titanium;
- Abutments to prepare the surgical guide;
 Prosthetic guide inner diameter 2 mm
 Heights 6 and 10 mm;

- :: Surgical Guide: package with 10 units (5 units of 10 mm and 5 units of 6 mm);
 :: Surgical Guide Pin: package with 5 units

Guide

Pin

103.092 103.093

References

- (1) Novellino MM, Sesma N, Zanardi PR, Laganá DC. Resonance frequency analysis of dental implants placed at the posterior maxilla varying the surface treatment only: A randomized clinical trial. Clin Implant Dent Relat Res. 2017 Jun 20. doi: 10.1111/cid.12510. [Epub ahead of print]
- (2) Sartoretto SC, Alves AT, Resende RF, et al. Early osseointegration driven by the surface chemistry and wettability of dental implants. J Appl Oral Sci. 2015 May-Jun;23(3):279-87.
- (3) Sartoretto SC, Alves AT, Zarranz L, et al. Hydrophilic surface of Ti6Al4V-ELI alloy improves the early bone apposition of sheep tibia. Clin Oral Implants Res. 2016 Jun 17. doi: 10.1111/clr.12894. [Epub ahead of print]
- (4) Val JE, Gómez-Moreno G, Ruiz-Linares M, et al. Effects of Surface Treatment Modification and Implant Design in Implants Placed Crestal and Subcrestally Applying Delayed Loading Protocol. J Craniofac Surg. 2017 Mar;28(2):552-558.
- (5) Al-Nsorr MM, Chan HL, Wang HL. Effect of the platform- switching technique on preservation of peri-implant marginal bone: a systematic review. Int J Oral Maxillofac Implants. 2012 Jan-Feb;27(1):138-45.
- (6) Annibali S, Bignozzi I, Cristalli MP, et al. Peri-implant marginal bone level: a systematic review and meta-analysis of studies comparing platform switching versus conventionally restored implants. J Clin Periodontol. 2012 Nov;39(11):1097-113.
- (7) Hsu YT, Lin GH, Wang HL. Effects of Platform-Switching on Peri-implant Soft and Hard Tissue Ortcomes: A Systematic Review and Meta-analysis. Int J Oral Maxillofac Implants.2017;32(1):e9-e24.
- (8) Lazzara RJ, Porter SS. Platform switching: a new concept in implant dentistry for controlling postrestorative crestal bone levels. Int J Periodontics Restorative Dentistry. 2006 Feb:26(1):9-17.
- (9) Rocha S, Wagner W, Wiltfang J, Nicolau P, Moergel M, Messias A, Behrens E, Guerra F. Effect of platform switching on crestal bone levels around implants in the posterior mandible: 3 years results from a multicentre randomized clinical trial. J Clin Periodontol. 2016 Apr;43(4):374-82.
- (10) Babbush CA. Post treatment quantification of patient experiences with full-arch implant treatment using a modification of the OHIP-14 questionnaire. J Oral Implantol. 2012 Jun;38(3):251-60.
- (11) Block MS, Haggerty CJ, Fisher GR. Nongrafting implant options for restoration of the edentulous maxilla. J Oral Maxillofac Surg 2009:67:872–881.
- (12) Steigenga J, Al-Shammari K, Misch C, Nociti FH Jr, Wang HL. Effects of implant thread geometry on percentage of osseointegration and resistance to reverse torque in the tibia of rabbits. J Periodontol. 2004;75(9):1233-41.

Neodent®, NeoPoros, Acqua, Helix®, Drive®, Titamax®, Grand Morse®, Helix GM®, Drive GM®, Titamax GM®, Neotorque, NeoArch®, Zygoma GM™ are trademarks or registred trademarks of JJGC Indústria e Comércio de Materiais Dentários S.A.

CEREC is a trademark or registered trademark of Sirona Dental Systems GmbH (DE). Dentsply Sirona is a trademark or registered trademark of Dentsply Sirona, Inc. MEDENTIKA is a trademark or registered trademark of Medentika GmbH. Novaloc is a trademark or registered trademark of Valoc AG.

Novaloc is a tradelliark of registered tradelliark of valoc AG.

Panavia is a trademark or registered trademark of Kuraray Co. Ltd.

Amann Girrbach is a trademark or registered trademark of Amann Girrbach AG.

exocad is a trademark or registered trademark of exocad GmbH.

Dental Wings is a trademark or registered trademark of Dental Wings Inc.

3Shape is a trademark or registered trademark of 3Shape A/S.

